Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 986754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420027

RESUMO

The viability status of seeds before sowing is important to farmers as it allows them to make yield predictions. Monitoring the seed quality in a rapid and nondestructive manner may create a perfect solution, especially for industrial sorting applications. However, current offline laboratory-based strategies employed for the monitoring of seed viability are time-consuming and thus cannot satisfy industrial needs where there is a substantial number of seeds to be analyzed. In this study, we describe a prototype online near-infrared (NIR) hyperspectral imaging system that can be used for the rapid detection of seed viability. A wavelength range of 900-1700 nm was employed to obtain spectral images of three different varieties of naturally aged watermelon seed samples. The partial least square discriminant analysis (PLS-DA) model was employed for real-time viability prediction for seed samples moving through a conveyor unit at a speed of 49 mm/sec. A suction unit was further incorporated to develop the online system and it was programmatically controlled to separate the detected viable seeds from nonviable ones. For an external validation sample set showed classification accuracy levels of 91.8%, 80.7%, and 77.8% in relation to viability for the three varieties of watermelon seed with healthy seedling growth. The regression coefficients of the classification model distinguished some chemical differences in viable and nonviable seed which was verified by the chromatographic analysis after the detection of the proposed online system. The results demonstrated that the developed online system with the viability prediction model has the potential to be used in the seed industry for the quality monitoring of seeds.

2.
Sensors (Basel) ; 20(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255997

RESUMO

In this study, conventional machine learning and deep leaning approaches were evaluated using X-ray imaging techniques for investigating the internal parameters (endosperm and air space) of three cultivars of watermelon seed. In the conventional machine learning, six types of image features were extracted after applying different types of image preprocessing, such as image intensity and contrast enhancement, and noise reduction. The sequential forward selection (SFS) method and Fisher objective function were used as the search strategy and feature optimization. Three classifiers were tested (linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k-nearest neighbors algorithm (KNN)) to find the best performer. On the other hand, in the transfer learning (deep learning) approaches, simple ConvNet, AlexNet, VGG-19, ResNet-50, and ResNet-101 were used to train the dataset and class prediction of the seed. For the supervised model development (both conventional machine learning and deep learning), the germination test results of the samples were used where the seeds were divided into two classes: (1) normal viable seeds and (2) nonviable and abnormal viable seeds. In the conventional classification, 83.6% accuracy was obtained by LDA using 48 features. ResNet-50 performed better than other transfer learning architectures, with an 87.3% accuracy which was the highest accuracy in all classification models. The findings of this study manifested that transfer learning is a constructive strategy for classifying seeds by analyzing their morphology, where X-ray imaging can be adopted as a potential imaging technique.


Assuntos
Citrullus , Aprendizado Profundo , Algoritmos , Aprendizado de Máquina , Sementes/anatomia & histologia , Raios X
3.
Sensors (Basel) ; 20(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397311

RESUMO

The feasibility of a color machine vision technique with the one-class classification method was investigated for the quality assessment of tomato seeds. The health of seeds is an important quality factor that affects their germination rate, which may be affected by seed contamination. Hence, segregation of healthy seeds from diseased and infected seeds, along with foreign materials and broken seeds, is important to improve the final yield. In this study, a custom-built machine vision system containing a color camera with a white light emitting diode (LED) light source was adopted for image acquisition. The one-class classification method was used to identify healthy seeds after extracting the features of the samples. A significant difference was observed between the features of healthy and infected seeds, and foreign materials, implying a certain threshold. The results indicated that tomato seeds can be classified with an accuracy exceeding 97%. The infected tomato seeds indicated a lower germination rate (<10%) compared to healthy seeds, as confirmed by the organic growing media germination test. Thus, identification through image analysis and rapid measurement were observed as useful in discriminating between the quality of tomato seeds in real time.


Assuntos
Sementes , Solanum lycopersicum , Cor , Germinação , Fotografação
4.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857184

RESUMO

Viability analysis of stored seeds before sowing has a great importance as plant seeds lose their viability when they exposed to long term storage. In this study, the potential of Fourier transform near infrared spectroscopy (FT-NIR) was investigated to discriminate between viable and non-viable triploid watermelon seeds of three different varieties stored for four years (natural aging) in controlled conditions. Because of the thick seed-coat of triploid watermelon seeds, penetration depth of FT-NIR light source was first confirmed to ensure seed embryo spectra can be collected effectively. The collected spectral data were divided into viable and nonviable groups after the viability being confirmed by conducting a standard germination test. The obtained results showed that the developed partial least discriminant analysis (PLS-DA) model had high classification accuracy where the dataset was made after mixing three different varieties of watermelon seeds. Finally, developed model was evaluated with an external data set (collected at different time) of hundred samples selected randomly from three varieties. The results yield a good classification accuracy for both viable (87.7%) and nonviable seeds (82%), thus the developed model can be considered as a "general model" since it can be applied to three different varieties of seeds and data collected at different time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...